Hyperbolic composition operators on the ball
نویسندگان
چکیده
منابع مشابه
Compact Composition Operators on Bergman Spaces of the Unit Ball
Under a mild condition we show that a composition operator Cφ is compact on the Bergman space Aα of the open unit ball in C if and only if (1− |z|)/(1− |φ(z)|) → 0 as |z| → 1−.
متن کاملWeighted Composition Operators and Integral-Type Operators between Weighted Hardy Spaces on the Unit Ball
متن کامل
The Dirichlet Problem on the Hyperbolic Ball
(1.2) PIH : C(Sn−1) −→ C(B) ∩ C∞(Bn), such that u = PIH f solves (1.2A) ∆Hu = 0 on B, u ∣∣ Sn−1 = f. Here, ∆H is the Laplace-Beltrami operator on B, with metric tensor (1.1). We will establish further regularity on u = PIH f when f has some further smoothness on Sn−1, and estimate du(x), in the hyperbolic metric, as x → ∂B. If n = 2, then ∆Hu = 0 if and only if ∆u = 0, where ∆ = ∂ 1 +∂ 2 2 is t...
متن کاملCompact composition operators on Hardy-Orlicz and weighted Bergman-Orlicz spaces on the ball
Using recent characterizations of the compactness of composition operators on HardyOrlicz and Bergman-Orlicz spaces on the ball ([2, 3]), we first show that a composition operator which is compact on every Hardy-Orlicz (or Bergman-Orlicz) space has to be compact on H∞. Then, although it is well-known that a map whose range is contained in some nice Korányi approach region induces a compact comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2012
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-2012-05646-7